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Abstract

In one-way analysis of variance (ANOVA) models, it is sometimes of interest to
perform simultaneous multiple comparisons of treatment groups with a control group.
Dunnett’s test is used to test such differences. The assumptions of ANOVA and of
Dunnett’s test require that the variance of the outcome of interest is the same for each
group. However, this assumption is not always met in practice even after transfor-
mation. In this research, we developed a parametric bootstrap method for comparing
multiple treatment group means against the control group when the constant variance
assumption is violated and data are unbalanced. Simulation studies show that the pro-
posed method outperforms Dunnett’s test in controlling the type I error under various
settings, particularly when data is with heteroscedastic variance and with unbalanced
design. An example is presented to illustrate usage of the proposed method. Key
words: Parametric bootstrap, Multiple comparison, Unequal variance, Dunnett’s test,
Simulations, ANOVA, HeteANOVA.

1 Introduction

Consider a one-way analysis of variance (ANOVA) problem with a treatment groups,

where the first group is a control group. Let Yij be the value of the response variable in the

jth trial for the ith factor level, µ+αi the mean for the ith factor level, i = 1, 2, · · · , a, j =

1, 2, · · · , ni . The one-way ANOVA model is as follows:

Yij = µ+ αi + εij, (1)

where εij
iid∼ N(0, σ2

i ), and
∑

i αi = 0.

One may wish to perform multiple comparisons of the treatment groups with the control

group, rather than performing all pairwise comparisons. Under the equal variance assump-

tion, Dunnett’s test [1, 2] can be used for such purpose and is frequently used in clinical or
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pharmacological studies [3, 4, 5, 6]. Dunnett’s test compares a− 1 pairs (each group with

the control group), instead of the
(
a
2

)
pairs involved in all pairwise comparisons. Dunnett’s

test uses the statistic

|Ȳ1 − Ȳi|√
σ̂2(1/n1 + 1/ni)

(2)

where Ȳi is the sample mean for group i, i 6= 1, with α1 the parameter associated with the

control group, and σ̂2 is the pooled variance estimate
∑a

i=1

∑ni
n=1(Yij−Ȳi)2∑a
i=1 ni−a .

When the assumption of equal variance is violated and data are unbalanced (hereafter

called HeteANOVA problem), the results of Dunnett’s test are questionable. Many al-

ternative methods were developed for the classical F-test and multiple comparisons for

HeteANOVA problems [7, 8, 9]. Among them, the parametric bootstrap (PB) [7] test is

shown to be one of the best for testing equality of factor level means. Recently, Zhang

[8, 10] proposed PB multiple comparison tests for one-way and two-way ANOVA, which

are shown to be competitive.

Inspired by Dunnett’s test and PB tests, in this research, we develop a PB test analogous to

Dunnett’s test, which performs simultaneous multiple comparisons of the treatment groups

with the control for the HeteANOVA problem. This research is organized as follows:

Section 2 proposes the methodology and presents the algorithm; Section 3 performs a

simulation study; Section 4 gives a real example; and Section 5 gives conclusions and

discussion of the research.
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2 Proposed PB Test and Algorithm

In this section, we develop a PB method for multiple comparisons of treatment groups

with the control group for a HeteANOVA problem, and present an algorithm to implement

the test.

2.1 Proposed PB Test

Assume without loss of generality that the mean of Ȳi is zero for all i. Then Ȳi ∼

N(0, σ2
i /ni) and the sample variance S2

i ∼
σ2
i

n−1
χ2

(ni−1) [11]. These can be approximately

simulated by pivot variables ȲBi ∼ N(0, s2
i /ni), or equivalently, ȲBi ∼ N(0, 1)

√
s2
i /ni,

and S2
Bi ∼

s2i
n−1

χ2
(ni−1).

Following the procedure from previous papers [7, 8], consider the test statistic in equation

(2). We modify this to include the different group variances:

T =
|Ȳ1 − Ȳi|√

(s2
1/n1 + s2

i /ni)
(3)

We can replace Ȳi and s2
i in equation (3) with ȲBi and S2

Bi to obtain a PB pivot vari-

able:

TPB =
|ȲB1 − ȲBi|√

(S2
B1/n1 + S2

Bi/ni)
(4)

We can then simulate a distribution for the test statistic (3), using (4). With this simulated

distribution, we can estimate the p-value or obtain a critical value which can be used to
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construct confidence intervals. The procedure is shown in the following algorithm.

2.2 Parametric Bootstrap Algorithm for Comparing Multiple Treat-

ment Groups with Control

Algorithm 1

a. For a given (n1, n2, ..., na), (ȳ1, ȳ2, ..., ȳa), and (s2
1, s

2
2, ..., s

2
a), compute the test statistic

T in equation (3) for each group paired with the control group.

b. For l = 1, ..., L, generate ȲBi ∼ N(0, 1)
√
s2
i /ni, and S2

Bi ∼
s2i
n−1

χ2
(ni−1), i =

1, ..., a.

c. For each i 6= 1, compute the PB pivot variable TPB as in equation (4).

d. Dl = maximum over i of the results from step c.

(end loop).

D is then a simulated distribution for the test statistic. One can use the 1 − α quantile

of D, Dcrit, as a critical value for a decision rule (i.e. reject H0 : α1 = αi if the test

statistic (3) is larger than Dcrit) or construct a confidence interval using this critical value:

Ȳi − Ȳ1 ±Dcrit

√
(s2
i /ni + s2

1/n1). As usual, if a p-value is desired, one can compute the

proportion of values of D that are greater than the test statistic in (3).
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3 Simulations

To evaluate the performance of the algorithm, we simulated 2500 datasets and compared

the rejection rate for both Dunnett’s Test, using the DunnettTest function in the R

package DescTools [12] and the PB method (Algorithm 1) with L = 5000 bootstrap

sample mean and variance vectors. We used a = 6 treatment groups including the control,

withσ2
1 = (1, 1, 1, 1, 1, 1), σ2

2 = (0.1, 0.1, 0.1, 0.5, 0.5, 0.5), σ2
3 = (1, 1, 1, 0.5, 0.5, 0.5), σ2

4 =

(0.1, 0.2, 0.3, 0.4, 0.5, 1), σ2
5 = (0.3, 0.9, 0.4, 0.7, 0.5, 1), andσ2

6 = (0.01, 0.1, 0.1, 0.1, 0.1, 1).

The sample size vectors used in the simulations weren1 = (5, 5, 5, 5, 5, 5),n2 = (10, 10, 10, 10, 10, 10),

n3 = (3, 3, 4, 5, 6, 6), and n4 = (4, 6, 8, 12, 16, 20). All calculations, simulations and data

analysis were performed using R [13].

Results are shown in Table 1. With the equal variance assumption, both Dunnett’s test and

the PB test give acceptable results. Additionally, when data are balanced, Dunnett’s test

performs satisfactorily in most heteroscedastic cases. The exception to this is for σ2
6 . In

this case, the simulated p-value for Dunnett’s test is higher than the nominal level even

with balanced data. This variance vector includes 0.01 which is small, likely leading to an

artificially small pooled variance estimate and thus an artificially large test statistic, so the

test rejects more often than the nominal level.

The PB test outperforms Dunnett’s test, with simulated p-values close to the nominal level

for all simulation settings including unequal variance and unbalanced data. In all het-

eroscedastic cases except σ2
3 , the proportion rejected for Dunnett’s test is too conservative

(less than the nominal level) when the data are unbalanced. In these cases, the smaller

variances in the simulations are for groups with smaller sample sizes, and larger variances
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for groups with larger sample sizes. For these settings, the pooled variance is artificially

large, leading to a test statistic that is artificially small. The opposite is true for σ2
3 , which

assigns smaller variances to larger group sizes, so the pooled variance estimate is too small

and the test statistic too large.

7



Table 1: Simulation Results for Multiple Comparisons of Treatment Group Means vs. Control.
Numbers in the table are simulated p-values. We consider four different sample sizes and six different

variance vectors as shown in Section 3, with the two different α levels shown.
α = 0.05 α = 0.1

σ2
1 Dunnett PB Dunnett PB
n1 0.0516 0.0420 0.1044 0.0824
n2 0.0464 0.0360 0.1080 0.0980
n3 0.0448 0.0384 0.1052 0.0876
n4 0.0584 0.0592 0.0996 0.1052

σ2
2 Dunnett PB Dunnett PB
n1 0.0464 0.0444 0.0940 0.0872
n2 0.0420 0.0460 0.0868 0.1056
n3 0.0100 0.0364 0.0328 0.0836
n4 0.0016 0.0540 0.0080 0.0996

σ2
3 Dunnett PB Dunnett PB
n1 0.0704 0.0404 0.1272 0.0788
n2 0.0752 0.0364 0.1368 0.0976
n3 0.1000 0.0412 0.1836 0.0956
n4 0.1408 0.0592 0.2064 0.1068

σ2
4 Dunnett PB Dunnett PB
n1 0.0456 0.0472 0.0780 0.0928
n2 0.0424 0.0424 0.0744 0.1092
n3 0.0104 0.0376 0.0336 0.0844
n4 0.0004 0.0496 0.0020 0.0944

σ2
5 Dunnett PB Dunnett PB
n1 0.0348 0.0436 0.0768 0.0892
n2 0.0320 0.0412 0.0692 0.1056
n3 0.0184 0.0372 0.0604 0.0872
n4 0.0096 0.0556 0.0308 0.1016

σ2
6 Dunnett PB Dunnett PB
n1 0.0996 0.0540 0.1392 0.1060
n2 0.1000 0.0416 0.1440 0.1044
n3 0.0308 0.0412 0.0628 0.1056
n4 0.0016 0.0460 0.0036 0.0884
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4 Application

An example of the method is shown by applying it to the data discussed by Sanaman and

Lear (data downloaded from website by Winner, University of Florida) [14, 15]. The data

concerns iron content, in milligrams per liter, found in various depths of seawater. For this

example, we considered surface water, where Depth=0, to be the control group. Summary

statistics are shown in Table 2. We use five digits for the display as some of the sample

variances are quite small. We can see that the variance for 40 feet is somewhat larger than

the others, and the variances at the shallower levels are somewhat smaller than those for

the deeper levels.

Table 2: Summary Statistics for Iron Data
Depth ȳi s2

i si ni
0 0.04267 0.00001 0.00252 3
10 0.03967 0.00006 0.00757 3
30 0.04533 0.00001 0.00231 3
40 0.10867 0.00169 0.04105 3
50 0.10333 0.00020 0.01401 3
100 0.20520 0.00052 0.02282 5

We fit the one-way ANOVA model and then checked assumptions of normality and con-

stant variance. By the Shapiro-Wilk test for normality using the shapiro.test func-

tion in R (W = 0.9394, p-value = 0.2334), and examination of a normal plot of the standard-

ized residuals (residual plots shown in the appendix), the normality assumption was satis-

fied. For checking the constant variance assumption, we examined a plot of the standard-

ized residuals against the fitted values from the ANOVA model (Figure 1 in the appendix,

right panel). We also performed the Breusch-Pagan test using the function bptest from

the R package lmtest [16]. The p-value from the Breusch-Pagan test was 0.0596, be-
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tween the commonly used alpha levels of 0.05 and 0.1, and the residual-fitted plot did

appear to indicate non-constant variances.

Several transformations were attempted to satisfy the non-constant variance assumption:

log transformation; Box-Cox transformation using λ = −0.2; and since the units of mea-

surement mg/L could be considered a proportion, the sin−1√yij transformation. The λ

value for the Box-Cox transformation was found using the boxcox function from the R

package MASS [17]. While the log transformation and the Box-Cox transformation im-

proved the appearance of the fitted-residual plots (shown in Figure 2 of the appendix),

none of these improved the p-value from the Breusch-Pagan test.

We performed Dunnett’s test, using the previously mentioned function in R, on both the

untransformed data and the Box-Cox transformed data. Of note, the normality assumption

was still satisfied after the Box-Cox transformation, with W = 0.9554 and p-value = 0.4556

according to the Shapiro-Wilk test. The Dunnett’s tests found a significant difference

between the iron content of water from the surface (treated as control) and all depths of 40

feet or greater. We then performed the analogous PB test. This test only found a significant

difference between the surface and depths of 50 feet or greater. The differences between

means, confidence intervals and p-values are shown in Tables 3 and 4 for Dunnett’s test

and Table 5 for the PB test.
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Table 3: Results from Dunnett’s Test, Iron Data
Diff Lower CI Upper CI p-value

10-0 -0.0030 -0.0508 0.0448 0.9998
30-0 0.0027 -0.0451 0.0504 0.9999
40-0 0.0660 0.0182 0.1138 0.0065
50-0 0.0607 0.0129 0.1084 0.0118

100-0 0.1625 0.1198 0.2053 0.0000

Table 4: Results from Dunnett’s Test, Box-Cox Iron Data
Diff Lower CI Upper CI p-value

10-0 -0.1659 -0.8462 0.5143 0.9275
30-0 0.1140 -0.5663 0.7943 0.9835
40-0 1.5183 0.8380 2.1985 0.0001
50-0 1.5144 0.8341 2.1946 0.0004

100-0 2.5269 1.9185 3.1354 0.0000

Table 5: Results from PB Test, Iron Data
Diff Lower CI Upper CI p-value

10-0 -0.0030 -0.0315 0.0255 0.9852
30-0 0.0027 -0.0095 0.0149 0.8072
40-0 0.0660 -0.0810 0.2130 0.3210
50-0 0.0607 0.0098 0.1115 0.0290

100-0 0.1625 0.0987 0.2263 0.0024

Recall from Table 2 that the measurements taken at 40 feet have a larger variance than

the other depths. Thus, the pooled variance estimate could be too small for this group

and lead to an artificially large test statistic in the traditional Dunnett’s test. In fact, the

mean squared error from the ANOVA model for the untransformed data is 0.0004 and the

sample variance of the 40-foot depth measurements is 0.0017. A possible practical issue

with these results is that if the goal was to get the most iron-rich water from as shallow

depth as possible, knowing that the surface was not rich enough, obtaining the water from

40 feet deep could still yield samples that are not as high in iron as desired. A limitation
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of this example is that the sample sizes from each depth are small.

5 Conclusions and Discussion

In this research, we looked at Dunnett’s test from a parametric bootstrap view and pro-

posed a PB test for comparing treatment groups with the control. Simulation results show

that both Dunnett’s test and the PB test give acceptable results under the equal variance as-

sumption. Additionally, when data are balanced, Dunnett’s test performs satisfactorily in

most heteroscedastic cases. However, for heteANOVA problems when equal variance and

balanced data assumptions are both violated, Dunnett’s test no longer provides reasonable

nominal levels, while the proposed PB method works well. From the example, we see that

the classical way of transformation to deal with unequal variance is not guaranteed and

interpretation of the results after transformation is difficult. The proposed PB test is robust

to violation of equal variance and balanced design, and it is easy to implement.

While Dunnett’s test performed satisfactorily with most balanced data cases in simulations,

the rejection rate can be much higher or lower than the nominal level for the heteANOVA

problem. One reason for this is that if one group’s variance is much smaller than the

others, the pooled variance estimate will be too large, leading to an artificially small test

statistic. Similarly, if one group’s variance is much larger than the others, the pooled

variance estimate will be too small, leading to an artificially large test statistic.

Some limitations of the proposed PB method are that it requires the normality assump-

tion, so if a particular dataset violates both assumptions, a transformation may still be

needed. Additionally, as described in [18] section 4.3, we may need to exercise caution
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when making practical decisions based on differences in means between groups with un-

equal variances. For example, if a lower value of a response is desired, such as blood

pressure, a treatment group with a smaller mean and smaller variance may have a smaller

probability of achieving the desired outcome than a treatment group with a larger mean but

also larger variance. Thus, additional consideration of implications for the practical issue

being studied is warranted. This issue is illustrated in the iron data example. Despite these

limitations, the proposed PB test is a viable method for performing multiple comparisons

of treatment vs control for the heteANOVA problem.
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Appendix

Figure 1: Verification of Assumptions, Iron Data

Figure 2: Fitted-Residual Plots after Transformations, Iron Data
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R Code: The following code is one way to program the PB test (Algorithm ) to simulate a

distribution for the PB test statistic. The output here is the test statistic and the p-value, but

could be modified to return other values, for example, Dcrit or confidence intervals.

dunnett.PB <- function(L, ns, means, s2){

D <- rep(0, L)

r <- length(ns) #number of groups

pairs.data <- rep(0, r)

for(j in 1:r){

pairs.data[j] <- abs(means[1]-means[j])/ #the first will be 0

sqrt( (s2[1]/ns[1]) + (s2[j]/ns[j]))

}

test.stat <- max(pairs.data)

##storage vector for diff in group means for bootstrap data:

pairs <- rep(0, r)

for(i in 1:L){

y.B <- rep(0, r)

s2.B <- rep(0, r)

for (j in 1:r){

y.B[j]<- rnorm(1)*sqrt(s2[j]/ns[j])

s2.B[j] <- rchisq(1, df=(ns[j]-1))*s2[j]/(ns[j]-1)

pairs[j] <- abs(y.B[1]-y.B[j])/

sqrt( (s2.B[1]/ns[1]) + (s2.B[j]/ns[j]))

}
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D[i]<- max(pairs)

}

pval <- length(which(D>test.stat))/L

return(data.frame(test.stat=test.stat, pval=pval))

}
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